If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+6x-51=0
a = 9; b = 6; c = -51;
Δ = b2-4ac
Δ = 62-4·9·(-51)
Δ = 1872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1872}=\sqrt{144*13}=\sqrt{144}*\sqrt{13}=12\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-12\sqrt{13}}{2*9}=\frac{-6-12\sqrt{13}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+12\sqrt{13}}{2*9}=\frac{-6+12\sqrt{13}}{18} $
| x+(x+20)=165 | | 21x+15=20x-40+33 | | 7/5x=1/2(6x-4)-3/2x | | -12-r=-(r+6) | | 2(2x+1)=27+3(2x-5) | | 15=120+3b-15 | | 20x+12=14x | | (125)+(5x+10)=180 | | 10=10(x-9) | | (125°)+(5x+10)=180° | | -32-5x=4(-8-8x) | | 8x+7=31-7 | | 12x+12=12-12x | | 124^x(4)=7 | | (x-30)+(x+50)=80 | | 2(3w+4)/3=-4 | | 3x+11=3(x+4 | | 124^x=7 | | 10/3=3/n-3 | | 12(x-4)-11=15x-71 | | 5/n-1=7/3 | | √7x-14=√3x+14 | | n-5/5=9/3 | | 5y-3-3y+2=0 | | 3x+6+6x=18 | | 2x=4x8 | | 5x+11x=3+2x | | w-10=1.6 | | (-2x+0.6)^2=0 | | -x+5x=-48 | | (0.6-2x)^2=0 | | 2-7x=14+x |